Pembelajaran Pendidikan Agama Islam melalui Sistem Pencarian Artikel Berbasis Bidirectional Encoder Representations from Transformers (BERT)
Main Article Content
Abstract
Peningkatan jumlah artikel ilmiah dalam bidang keislaman dan pendidikan agama di era digital menghadirkan tantangan bagi mahasiswa, dosen, maupun peneliti dalam menemukan referensi yang relevan dan sesuai kebutuhan pembelajaran. Meskipun sumber informasi sangat melimpah, hasil pencarian yang ditampilkan mesin pencari umum sering kali bersifat generik dan tidak spesifik pada ranah Pendidikan Agama Islam, sehingga proses pencarian referensi menjadi kurang efisien dan memakan waktu. Penelitian ini bertujuan untuk mengembangkan sistem pencarian artikel berbasis web yang memanfaatkan Bidirectional Encoder Representations from Transformers (BERT) untuk mendukung pembelajaran dan penelitian dalam Pendidikan Agama Islam. Dataset yang digunakan terdiri dari 2.125 artikel ilmiah terkait studi Islam dan Pendidikan Agama Islam yang dikumpulkan dari Google Scholar serta beberapa repositori jurnal keagamaan. Hasil pengujian menunjukkan bahwa sistem pencarian berbasis BERT mampu memberikan hasil yang lebih relevan dibandingkan pencarian konvensional. Uji oleh pengguna memperoleh persentase 89% (kategori baik. Dengan demikian, dapat disimpulkan bahwa sistem pencarian artikel berbasis BERT ini layak digunakan sebagai penunjang pembelajaran dan penelitian dalam bidang Pendidikan Agama Islam, karena efektif, efisien, dan mudah diakses.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
License Terms
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
References
Ahmed, A., & Saeed, M. (2023). Implementing Natural Language Processing in Islamic Education. Computers & Education, 231, 104417.
Alqahtani, S., & Kavakli-Thorne, M. (2021). Improving semantic search in digital libraries using transformer-based models. Journal of Information Science, 47(6), 781–795. https://doi.org/10.1177/0165551520965521
Arora, R., & Kansal, V. (2023). A comprehensive survey on BERT and its variants for natural language processing. Artificial Intelligence Review, 56(7), 6135–6171. https://doi.org/10.1007/s10462-022-10371-8
Babu A, Boddu SB. (2024) BERT-Based Medical Chatbot: Enhancing Healthcare Communication through Natural Language Understanding. Explor Res Clin Soc Pharm.13:100419. https://doi.org/10.1016/j.rcsop.2024.100419
Benali BA, Mihi S, Laachfoubi N, Mlouk AA. (2022) Arabic Named Entity Recognition in Arabic Tweets Using BERT-based Models. Procedia Comput Sci. 2022;203:733–8. https://doi.org/10.1016/j.procs.2022.07.109
Chen X, He B, Hui K, Sun L, Sun Y.(2023) Dealing with textual noise for robust and effective BERT re-ranking. Inf Process Manag. 2023;60(1):103135. https://doi.org/10.1016/j.ipm.2022.103135
Choudhary, M., & Bhattacharya, S. (2022). Transformer-based semantic retrieval models: A review. Information Processing & Management, 59(6), 103081. https://doi.org/10.1016/j.ipm.2022.103081
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 4171-4186.
Fatmawati, E., & Suharto, U. (2022). Pemanfaatan teknologi informasi untuk peningkatan literasi digital mahasiswa Pendidikan Agama Islam. Jurnal Pendidikan Islam Indonesia, 7(1), 45–56. https://doi.org/10.24252/jpii.v7i1.28913
Guo Y, Xie Z, Chen X, Chen H, Wang L, Du H, et al.(2024). ESIE-BERT: Enriching sub-words information explicitly with BERT for intent classification and slot filling. Neurocomputing. 591:127725. https://doi.org/10.1016/j.neucom.2024.127725
Hamzah, A., & Yusof, A. M. (2021). Integrating Islamic education with digital technology: A systematic literature review. Journal of Islamic Education Research, 6(2), 120–135. https://doi.org/10.24042/jier.v6i2.11204
Imran, M., Rahman, M., & Nazeer, M. (2021). Semantic search in Islamic education using NLP techniques. Information Systems Management, 37(1), 67-81.
Jalal N, Mehmood A, Choi GS, Ashraf I.(2022). A novel improved random forest for text classification using feature ranking and optimal number of trees. J King Saud Univ - Comput Inf Sci. 34(6):2733–42. : https://doi.org/10.1016/j.jksuci.2022.03.012
Kamran AB, Abro B, Basharat A.(2023). SemanticHadith: An ontology-driven knowledge graph for the hadith corpus. J Web Semant.78:100797. https://doi.org/10.1016/j.websem.2023.100797
Kowsari, K., Brown, D. E., & Heidarysafa, M. (2021). Text classification algorithms: A survey. Information, 12(4), 150. https://doi.org/10.3390/info12040150
Licari D, Comandè G.(2024) ITALIAN-LEGAL-BERT models for improving natural language processing tasks in the Italian legal domain. Comput Law Secur Rev. 2024;52.
Lin D, Tang J, Li X, Pang K, Li S, Wang T.(2022) BERT-SMAP: Paying attention to Essential Terms in passage ranking beyond BERT. Inf Process Manag.;59(2):102788. : https://doi.org/10.1016/j.ipm.2021.102788
Liu, Q., Chen, Y., & Xu, J. (2023). User-centered evaluation of semantic search engines. International Journal of Human–Computer Interaction, 39(10), 1921–1936. https://doi.org/10.1080/10447318.2022.2075125
Ni’mah, A.T; Arifin A.Z.(2020). Perbandingan Metode Term Weighting terhadap Hasil Klasifikasi Teks pada Dataset Terjemahan Kitab Hadis. Rekayasa J Sci Technol.13(2):172–80. https://doi.org/10.21107/rekayasa.v13i2.6412
Oktaviani, A. (2023). Trends in Islamic Education Publications: An Analysis from Scopus. International Journal of Islamic Studies, 15(2), 45-60.
Qiu Y, Jin Y. (2024). ChatGPT and finetuned BERT: A comparative study for developing intelligent design support systems. Intell Syst with Appl. 2:200308. https://doi.org/10.1016/j.iswa.2023.200308
Rahman, M. M., & Forhad, S. M. (2021). Challenges of retrieving Islamic scholarly articles: A user-centered search interface. Journal of Islamic Librarianship and Information Science, 8(1), 20-35.
Saleh, M., & Hanapi, M. (2022). Digital transformation in Islamic higher education: Opportunities and challenges. International Journal of Emerging Technologies in Learning (iJET), 17(12), 92–108. https://doi.org/10.3991/ijet.v17i12.32645
Sazali SS, Rahman NA, Bakar ZA. (2022). Characteristics of Malay translated hadith corpus. J King Saud Univ - Comput Inf Sci. 34(5). https://doi.org/10.1016/j.jksuci.2020.07.011
Shang A, Zhu X, Danner M, Rätsch M. (2023). Unsupervised question-retrieval approach based on topic keywords filtering and multi-task learning. Comput Speech Lang. 87. 101644. : https://doi.org/10.1016/j.csl.2024.101644
Souza FC, Nogueira RF, Lotufo RA. (2023). BERT models for Brazilian Portuguese: Pretraining, evaluation and tokenization analysis. Appl Soft Comput.149(September).
Trivedi, H., & Raj, S. (2020). Comparison of neural IR and traditional IR approaches in academic search. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2101–2104. https://doi.org/10.1145/3397271.3401464
Wang FH. (2017). Computers & Education An exploration of online behaviour engagement and achievement in fl ipped classroom supported by learning management system. Comput Educ. 114:79–91. http://dx.doi.org/10.1016/j.compedu.2017.06.012
Wang, Y., Ma, H., & Li, Z. (2023). Evaluating deep learning models for information retrieval: A usability perspective. ACM Transactions on Information Systems, 41(2), 1–28. https://doi.org/10.1145/3528417
Yang J, Yang X, Li R, Luo M, Jiang S, Zhang Y, et al. (2023). BERT and hierarchical cross attention-based question answering over bridge inspection knowledge graph. Expert Syst Appl. 233:120896. https://doi.org/10.1016/j.eswa.2023.120896
Zhang, Y., Liu, Y., & Wang, F. (2021). A comparative study of BERT and traditional methods in text classification. Journal of Machine Learning Research, 22(155), 1-22.